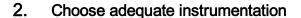
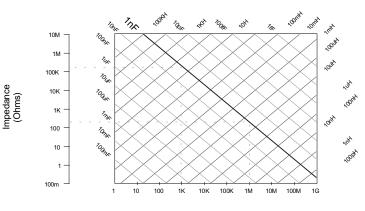
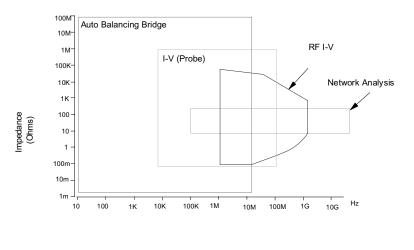
This literature was published years prior to the establishment of Agilent Technologies as a company independent from Hewlett-Packard and describes products or services now available through Agilent. It may also refer to products/services no longer supported by Agilent. We regret any inconvenience caused by obsolete information. For the latest information on Agilent's test and measurement products go to:

www.agilent.com/find/products

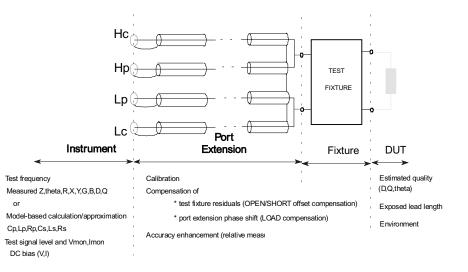

Or in the US, call Agilent Technologies at 1-800-452-4844 (8am-8pm EST)


IMPEDANCE MEASUREMENTS ... in brief

1. Know the DUT impedance

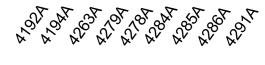

Reactance chart of various ideal capacitors and inductors helps approximating DUT impedance range vs frequency for choosingthe proper in strument technique. For instance, a 1nF ideal capacitor exhibits an impedance of 160 KOhms @ 1KHz and only 160 Ohms @ 1MHz.

This chart shows that autobalancing bridge technique provides the widest impedance range. I-V probe is good for medium frequency range. Reflectometry or network analysis has narrowest impedance range,but allows very high frequency measurements. However, to be complete, this chart should be 3-dimensional showing accuracy as well. Don't forget it !



3. Set-up and measurement procedure

To test this 1nF capacitor up to 1MHz, with best accuracy, we will use an autobalancing bridge, with a 4 terminal pair port extension if required.


Here, measurement quality depends on the quality of the instrument, the port extension and the test fixturing. Indicated measurement result is then close to or identical to the real value. This figure summarizes the key points. For example, remember that Z and theta are measured while Cp,Lp,Cs,Ls,...are calculated. So, always start by evaluating Z and theta !

Measurement Methods and HP Products

Measurement Method	HP Products	Frequency range			
Auto Balancing Bridge (Four-Terminal Pair)	HP 4263A LCR Meter	100Hz to 100 kHz spot 100Hz to 10MHz spot			
(HP 427xA LCR Meters	20Hz to 1MHz spot			
	HP 4284A Precision LCR Meter HP 4285A Precision LCR Meter	75KHz to 30MHz			
	HP 4192A LF Impedance Analyzer	5Hz to 13MHz			
	HP 4194A Impedance/Gain-Phase Analyzer	10Hz to 40MHz			
Resonant (Q-Meter)	HP 4342A Q-Meter (Obsolete, FY94)	22KHz to 70 MHz			
	HP 42851A Q Adapter (with HP 4285A)	75KHz to 30 MHz			
I-V (Probe)	HP 41941A Impedance Probe (with HP 4194A)	10KHz to 100MHz			
	HP 4193A Vector Impedance Meter	400KHz to 110MHz			
RF I-V	HP 4286A RF LCR Meter	1 MHz to 1 GHz			
	HP 4291A Impedance/Material Analyzer	1 MHz to 1.8 GHz			
Network Analysis (Reflection Coefficient)	HP 4191A RF Impedance Analyzer (Obsoleted in 1995)	1MHz to 1GHz			
	HP 4195A Network/Spectrum Analyzer with HP 41951A Impedance Test Set	100 kHz to 500MHz			
	HP 4396A Network/Spectrum Analyzer with HP 43961A Impedance Test Kit	100 kHz to 1.8 GHz			
	HP 8751A Network Analyzer	5Hz to 500MHz			
	HP 8752C/8753D RF Network Analyzers	300KHz to 1.3GHz/6GHz			
	HP 8510B Network Analyzer	45 MHz to 100GHz			
	HP 8719C/8720C Network Analyzers	130MHz to 13.5GHz/20GHz			

Cable Correction / Compensation by Product

Cable Correction / Electrical Length Compensation	4	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark
Open / Short Compensation	<	\checkmark	\checkmark	\checkmark	\checkmark	>	✓	✓	\checkmark
Open / Short / Load Compensation			\checkmark						

© Copyright 1995 Hewlett-Packard Company Data subject to change Printed 9/95 596 4-3558E